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Abstract: We consider ill-posed problems of the form g(t) =f~ 
K(t ,s) f(s)ds and their discrete

approximations obtained by quadrature , Ax = b. ~We assume that our desired solution f is
r smooth and that our data g is measured experimently and contains highly oscillatory noise.
r k .  

~~~ theorems and examples we~demonstrate the effect of each of these procedures , the
singular value decomposition with truncation, (SVDT) a Hankel trans~~rmation with damping,
and the Tikhonov regularization procedure , on such noise in the data. ~We demonstrates that in
general , regularization is the most natural setting for mollifying the effects of such noise.
However , for certain problems SVDT is equally suitable and in fact may be better if the rate

• of convergence of the regularization procedure is too slow .

• 
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1. Introduction: We consider the following type of ill-posed problems. In the continous case

we consider a linear integral equation of the first kind

I•1
g(t) K(t ,s) f(s)ds (1)

where K is an L2- kernel and we assume that the null space of K, N(K), is empty. Then K

is a compact operator , and its inverse is unbounded. In the algebraic case we consider a r
square n x n system of linear equations

A x = b  (2)

where A is invertible , but ill-conditioned. As a measure of ill-conditionin g we use the ratio

of the largest to the smallest singular values. En our discussions we will consider (2) as a

discrete approximation to ( 1), obtained using a quadrature rule. Some papers . for example ,

Faddeev aná Faddeeva [1], Zhukovskii and Morozov [2], and Tikhonov [31 consider the

regularization of general systems (2) not ne.~essarily related to a Continuous problem ( 1).

However , we will see that in the context of the current discussion it may not be reasonable to

consider general systems.

A problem is ill-posed if small changes in the data - in problem ( 1) the data is g(t ) .  in

problem 2 it is b - can yield large changes in the solution.

Example. In ( 1) let KU,s) = 0 t < s
I t � s

Then solving ( I )  is equivalent to differentiating g. If we replace g by g~ g + e sinwt for

• small c and large w , we see that for the solution of ( 1) , f
~ 

corresponding to g~ . the error f 6

f - g’ = ~w coswt , is large . 

.••-—-- • - — - - - - - - -~~~- • • - -  ~~~~~~~~~~~~ — - ~~—.• —-. --~~--
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The application of standard numerical analytic techniques to the solution of ( 1) or (2)

yields non physical, highly oscillatory solutions. Equations of the form (1), arise in many

applications, for example the numerical differentiation of tabulated data , the deconvolution of

- . data obtained in spectroscopy experiments, inverse problems in geophysics, and in signal

processing, such as radar and sonar . For examples of some of these applications see the

following references Bachmann et al [41, Huang and Parrish [5] and Backus and Gilbert [6].

We emphasize the fact that we want a solution, not just at one point of an interval , but

over the entire interval. Moreover, we are dealing with experimentally determined data so this

data almost surely contains errors, perhaps both systematic and random. The following

discussion assumes that any systematic errors have been removed from the data supplied to

(1). In many cases, the random error obtained is highly oscillatory and of low amplitude, and

the desired measurement is smooth. It is this situation that we want to discuss.

In recent years several schemes, see for example , Hanson [71, Varah [8], Ekstrom and

Rhoads [9], Tikhonov [10], and Lee et al [11] have been proposed for solving (I )  and (2).

We will discuss 3 of these, the singular value decomposition with truncation (SVDT) Hanson

[7], Varah [8]; the Hankel transformation procedure of Ekstro m and Rhoads [9]; and the

regularization procedure of Tikhonov [10]. We will attempt to give some understanding of the

relationships between these 3 procedures and of the strengths and weaknesses of each of these

procedures by presenting a few Theorems and examples. We will argue , using ideas from

Anderssen and Bloomfield [12] for numerical differentiation , that of the 3 procedures, the

regularization procedure yields the most natural resolution of the problem of handling noisy

data. We argue by example that in general , the SVDT procedure may not mollify the effects

of the noise in the data. The Ekstrom-Rhoads procedure lies somewhere between SVDT and

regularization. This Hankel transformation procedure is very interesting and does mollify the

noise. We can , however , show by example that it may also mollify the desired solution which

is something we do not want to do. The key to our problem is an appropriate choice of basis,
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see for example Varah [13]. To decide what basis is appropriate we must first decide what the

objective of our computation is. What would we like to be able to do?

• 
- 

First we state two basic premises.

• Premises

1) We assume that the desired solution is smooth with one or more derivatives. 2) We

assume the data contains highly oscillatory additive noise. See Figure 1.

Given these premises our objective is as follows.

Objective

To approximate our original problem by a better conditioned problem that ( 1) reduces the

influence of the noise, and (2) gives us a physically meaningful solution that approximates the

true solution in some reasonable sense. We will demonstrate by example in the section on

SVDT that modifying a problem so that it is numerically stable does not necessarily guarantee

that we have simultaneously mollified the significant part of the noise. clearly, the errors in

the data impose a limitation on the achievable accuracy.

g 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ =~~ easured dat~~~~~~~~~~~~~~~~
,

Figure I

We note in passing that in certain situations , for example in the registration system of an

electron beam column Wilson et al [14 1 noise removal is achieved by simply running the same

experiment many times and then averaging the data obtained over the many runs. With truly
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random data with zero mean averaging over a set of experiments will eliminate the noise.

However, there are many situations where it is impractical or even wrong to run the same

experiment many times. See Chang [15] for example which discusses Auger spectroscopy. In

S 
Auger analysis a beam of electrons is shot at a specimen. Certain types of electrons subse-

quently emitted from the specimen are collected and used to determine the chemical compos-

ition of the specimen. However , each time the specimen is exposed to the beam, deterioration

• of the specimen occurs and in fact the sample at the end of an experiment may not be identical

to what it was in the beginning. Therefore , noise averaging is not feasible.

~ 
As stated earlier, in the preceeding context we will discuss 3 methods SVDT, Ekstrom and

S Rhoads, and regularization keeping the 2 premises and our stated objectives in mind. We

conclude that regularization is the most direct of the 3 methods for handling any random noise

in the data. We note, however , that in certain situations SVDT also effectively handles the

noise. We further note that the goodness of a regularization approximation depends strongly

upon the rate of convergence of the approximations , and for some problems this rate as

pointed out by Franklin [16] can be very slow. In such a situation a SVDT may yield a better

result than regutarization. Thus, the use of regularization is not as straightforward as some

articles would indicate. This discussion should not be interpreted as a proposal that any of the

3 methods not be used. It is only an attempt to interpret each of these 3 procedures in terms

of what they do to any noise in the given data . As the discussion proceeds we will see that

many areas of applied mathematics come into play. Functional analysis , integral equation

theory , quadrature rules, numerical linear algebra , Fourier analysis , statistics , and filtering

theory are all used.

2. The Singular Value Decomposition with Truncation (SVDT).

Picard ’s Theorem , Smithies [17], gives necessary ar I sufficient conditions for the existence of

a solution to ( 1) .
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Theorem 1 [17]. Let K(t ,s) be an L2 - kernel for (t ,s) in [0, 11 x [0,1], and let g e L, [0, 1].

Then (1) has an i,.2 - solution f if and only if

~ 1
T 2

— ( g u n ) <x

n= 1 ~~ 2 (3)

and g is in the closure of the range of K, ~~(K). In (3) Un, is a full set of eigenfunctions for

the operator K K* and a~
2 is the corresponding set of eigenvalues , a~

2 + 0 as n + x. K is

the adjoint operator of K. and its kernel is K ( t ,s) K(s ,t).

Theorem 2 [17]. Under the hypotheses of Theorem 1, equation ( 1) has the unique solution in

the orthogonal complement of N(K) ,

~ I
f = — (gTU )  v~ (4)

n= 1 a
~

where the v~ are the eigenfunctions of the operator K*K.

The system IU rJ . {v rj , {a ,~}, n 1.2 ,. . . is the singular value decomposition of the

operator K , Smithies [17J .

That is,

K = ~ a~~u~~v~T ( 5)
n . )

Similarly, for the matrix A, we obtain

A = U I V T (6)

where the columns of U and V are the vectors u 1 u~ and v 1 v~ respectively, and ~ is

the diagonal matrix whose non zero entries are aj . I ~ j ~ n. The a~ are called the singular

values of K or A. We note that the closure of the span of the v~ , n = 1.2.... is the closure

of the range of K , R (K ). which equals the orthogonal complement of the null space of K,
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N(K)~~. Moreover, the closure of the span of the u~, n 1,2,... equals the closure of the

range of K, R(K) , which equals the orthogonal complement of the null space of K , N (K ) .~.

Since we assume N(K) = tO] , we have tha t the v~ span all of L2.

We note that there is a generalization of the SVD due to Van Loan [18] for real matrices

of the form A + B. It is called the BSVD and uses 3 matrices U,X, and V with U and V

orthogonal matrices and X nonsingular, plus 2 diagonal matrices 1A and 
~ B’ The resulting

• decomposition is

UTA X =~~ A
(7)

VTBX=~E9

If we denote the non zero entries in 
~ A by a1 1 � i ~ n , and those in 1B by I3~ I � i �

• n , then the B - singular values of A

~(A ,B) = I ~i � 0, det (A TA - ~2BTB) = 0]

are given by

~(A ,B) = {a 1/$~ I 1 � i � n}

We have stated both the SVD and BSVD results for square matrices, but both apply to

mx n rectangular matrices. The BSVD with truncation does not seem to have been used in the

literature, one exception is Varah [13]. We will not directly consider the BSVD: however , the

comments that we make about the SVD with truncation also apply to a BSVD with truncation.

The basis of interest in that case is the columns of X.

The SVD with truncation (SVDT) is easier to discuss in the algebraic framework (2), so

we consider (2). For any real matrix A we have a SVD

A — uIvT (8) 

-~~~~~-.~~~~~-•~~~~ - - -  ~~~~~~•— -. • - -~~~~~ --~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~ -~~~~~ ,.-• -.. --
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where U and V are orthogonal matrices, U an ortho-normal set of eigenvectors of AAT ,

V an ortho-normal set of eigenvectors of ATA and ~ a diagonal matrix whose entries are

the square roots of the eigenvalues of AAT, a~ + as j + n. The columns in U and V are

ordered to match the ordering in ~~~. In our problems A is square and nonsingular , so none of

the diagonal entries in ~ vanish.

A SVDT is achieved by considering the entries in E and deciding which entries are ‘not

significani ’ Varah [13], Lawson and Hanson [19]. ‘Insignificant ’ entries are set equal to zero

obtaining ! = (~~i 
O’\from

\0 0/

f~ 
0 ’\• 

= \O 12/ . Then the equation

Ax = U! VTx= b (9)
is solved.

This approach assumes that the projection of the data onto the singular vectors corresponding

to those singular values reduced to zero is small. In fact it assumes more. Namely, th at the

projection gTu~ amplified by l/ a~ is small. Varah [9! discussed this in detail and derives

some error estimates. We have the following simple lemma.

Lemma 1. SVDT is equivalent to projecting the given data onto the space spanned by the

‘significant ’ singular vectors. U in U.

Proof of Lemma L

Replace b by ‘

~~ = ~ ~
1’b. Then the solution ~ of Ax = 

‘

~~~ satisfies T = V 1’ UT ~~

= V(! )tiTb = v(~-’
o)UTb = X SVDT, the

solutio n of (9).

‘ I  Q.E.D.
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At this point it is appropriate to note that if our problem Ax = b is a discretization of ( 1)

then , Theorem I tells us that the requirement that the discreted data ,

n
g~ =1 (g~Tu3) u~ ( 10)

have the property that I g~Tu~ I << a~ for j near n , is not totally unreasonable if n is

‘large ’. Theorem 1 requires that

~ (gTL1)2
I ( 11 )
I c;~

2

Obviously the sum in ( I I )  can be finite only if the individual terms in the sum go to zero.

(Note that in (10) we have used u~ to denote a vector , and in ( 11) to denote a function. )

Thus, chopping makes sense in this setting, although for a general problem (2) there is no a

priori reason why the above requirement is reasonable. Varah [8] estimated the effect of

roundoff error on the SVDT as M/a k where M depends on the machine arithmetic used and

in (9) a~ has been set to zero for j � k. He did not discuss the effect of noise in the data.

although roundoff is frequently given a uniforml y distributed random model. Voevodin [20].

Suppose we are given b~ = b + e where e is randomly generated noise , with mean 0.

For large n we therefore çxpect e to have componentwise alternating signs. What is the

effect of e? What does a SVDT do to such an error? Since our system is linear , the addition-

al error in the solution of (9) due to e is

E I \ U ~ cX 
= V( 1 ’ 1 ( 1 2 )

l I x I l  \ o / I I X I I

Is ( 12) small7 Clearly, (12) wili’be zero only if € is orthogonal to the vectors u~, I � j ~ k.

For ( 12) to be small we must have e essentially orthogonal to these u~. Any nonzero projec-

tion of e onto these uj must be sufficiently small with respect to the corresponding projec-

_  -~~~~~~~~~~~~~ 
S 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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• tion of the true data , b, onto these vectors. If we recall our 2 premises , ( 1) our solution is

• smooth and (2) the error is highly oscillatory, then this requirement that ( 12 ) be small

translates into a requirement that the u~. I � j � k-I do not pick up highl y oscil latory

behavior.

Consider for example the oscillatory matrices Gantmacher [21] or at least matrices with

the following oscillation property.

Definition 1. A matrix A with eigenvalues A~ + j = I ,...,n has the oscillation property if the

following is true. There are m ~ n distinct eigenvalues 
~ 

+ j = 1 m, and there is a

corresponding complete basis of eigenvectors such that each of the basis vectors corresponding

to has exactly (j- 1) variations of sign in its coordinates.

Definition 2. A rectangular matrix A is caJied tota lly nonnegative (totally positive) if all its

minors of any order are nonnegative (positive) .

Definition 3. A matrix A is called oscillatory if A is totally nonnegative , A is nonsingular .

and al l the elements in the principal diagonal and the first superdiagonal and subdiagona) are

nonzero.

Oscillatory matrices arise in the stud y of small vibrations of elastic systems Gantmacher

and Krein [221. Oscillatory matrices have the oscillation property.

Theorem 3 Gantmacher and Krein [221. An oscillatory matrix A always has the

oscillatio n property.

Observe that if the matrix A in (2 ) has the oscillation property , then SVDT can remove

the effects of highly oscillatory noise whenever the desired solution is smooth. However, if A

does not have this propert y SVDT may have little effect on the noise. Before presenting an

exa mple to demonstrate this we note the following. In Varah (8], he considered 3 classical

_ _ _
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continuous , ill-posed problems (1) harmonic continuation , (2) the inversion of a LaPlace

transform, and (3) the backwards heat equation. It is interesting to note that although he did

not explicitly mention measurement errors, the discrete versions of these 3 problems that he

used in his computations each have the oscillation property stated in Definition 1. In fact the

matrices used for the LaPlace transform and for the heat equation are totally positive and

hence oscillatory. Thus, each problem in Varah [8] was expanded in a frequency or oscillation

oriented basis, and truncating the singular value decomposition was equivalent to removing the

high frequency components from the data. In such a situation SVDT achieves our stated (.

objectives.
5~

• Now , however , consider the following discussion that shows, SVDT, may not mollify the

effects of noise in the data. We consider the family of circulant matrices Gray [23].

Definition 4. An n x n matrix A is a right circulant if and only if a~h~~h = ~~ for all

integers 0 ~ i , j, h ~ n-i where the indices are computed modulo ~

For example the 4 x 4 matrix ‘

/a b c d\
C= f d a b c

~~c d a b
c d a

is a right circulant. A circulant has only n independent entries. Each successive row is the

successive cyclic permutation of the elements in the first row of the matrix. The sum , product,

transpose and inverse of a circulant matrix is a circulant matrix. Observe that circulants occur

in the problem of analytic continuation Varah [8]. Given a harmonic function u(r ,O) in the

unit circle with known values for some r < I , g(8)  = u(r ,O), find its values f( O) on the unit

circle , r = I. f and g satisfy,

I i-r i 1
g(9) = — I I f ( 0 1 ) dO 1 ( 1 3)

2,r 
~ [1 - 2r cos(9-9 1) + r 2 J

:‘~
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If we discretize at equally spaced points using the trapezoidal rule and the fact that the

• kernel and the solution are periodic , we obtain a symmetric circulant equation as an approxi-

mation to ( 13) .

‘S The fact that the right circulants form a commutative ring can be verified directly. Let C

I be a right circulant whose first row is (c0, c 1 c~~1). Let r~ = exp(2irij /n) where i = v’-l , 0

• 
S,

. � ~ � n - 1. The r~ are the n, nth roots of unity. Then the vectors v~ = w1/v~ where

“1,

w~T = ( 1, r1, r3
2 , .. ., r~~ ’) , 0 ~ j ~~ n — i ( 14)

• I form a unitary , eigenvector basis for C. The corresponding eigenvalues are

c.

n
A - =  I ck r- ” . ( 15)

~ k=0

If C is symmetric. tl en we must have

Ck = Cf l k  
(16)

for k = 1 (n /2 ) -I  if n is even , and for k = I , ..., [n/2 1 if n is odd. Note that c0 and .

if n is even , c~12, are singletons. In the symmetric case we therefore get

Ak A n k  
- 

( 1 7)

for k = I (n/2 )- 1 , if n is even , and for k = I [n/21 if n is odd. Note that X~ and, if

n is even , A~11, have multiplicity I.

We want to construct an ill-posed symmetric circulant matrix that does not have the

oscillation property in Definition 1. Clearly the vectors w~ as a function of increasing

have the appropriate oscillatory behavior ; the I I however do not have to decrease in size as

t . To verify this , consider the following lemma.

~ L~. - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~ • •  • . • •
~~~~~~~~~~~~~~ • ••  

_
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Lemma 2. Let n be odd. Given any sequence of [n/2 1 + 1 real numbers A0 

there is a real, symmetric circulant with eigenvalues Ao,..., 
~~~~~ 

and A~~ = A~ for j = I ,...,

[n/2 1.

Proof: To verify Lemma 2 we first note from ( 15) - ( 17) that the A~ would have to satisfy

with q = [n/2]

q
A0 = c0 + 2  I c ~

1

q 2s-kj
= c0 + 2 1 Ck cOs , 1 � j � q (19)

1 n

Observe that the jth row of the coefficient matrix of (19), if we let our unknown vector

be (c0/2, c1 Cq), is the function cos 2irjt evaluated at equally spaced points in the interval

• [0,11. But we know, see for example Bloomfield [24] these functions are orthogonal over

• equally spaced points. Therefore, (19) has a unique solution c0 cq for any set of A~. Now

define C to be the circulant whose first row is c0, c 1 Cq~ Cq. cq I  c 1.

Q.E.D.

Example 1.

By Lemma 2, for any odd n there is a symmetric circulant C6 with eigenvalues A0 =

A [n121 ~‘[n/2J+I 
= 1, and the other A~ > 3t’a as specified. For the SVD of C6 we obtain a~

= °2 1, 0k = Aj (k), °k + , k = 2,..., n - I , and a~ = e . Using SVDT, and setting o
~ 

= 0

~~ we would take out of the basis the vector w 1 = (1 , 1, .., I)/~/?i . Obviously this would have

little effect on the error since it would not affect any of the oscillatory basis vectors w~. j > 1.

• Thus, an ordering of the A~(C) according to decreasing magnitude , does not necessarily

correspond to increasingly oscillatory pattern s in the eigenvectors. There is. in general no

direct link between a frequency space analysis of a given problem and its eigensystem. The
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circulants give us a concrete family in which we can readily see this behavior. We could of

course , construct an example trivially. For if A is any oscillation matrix, then A ’ is not.

However , we introduced the circulants because they give us an interesting class of matrices

• that we will be able to use again in the section on regularization. Thus , we see that without an

oscillation property requirement there is no correlation between the SVDT and the removal of

highly oscillatory noise. Since roundoff error also has a random element , this remark also

applies to that kind of noise. SVDT yields a numerically well-conditioned problem and this is

an important consideration. We can also argue that our solution should not have any signif i-

• cant part on the ill-conditioned subspace that has been projected out. However , in general

(for example , for systems without the oscillation property) if we use SVDT the error in the

data is not mollified and thus appears in our solution. We would like to have a procedure that

would be numerically stable and that also would remove or mollify the error.

3. A Hankel Transformation Procedure. Ekstrorn and Rhoads [9].

First we restate our assumptions and our objective. We are assuming the desired solution

is smooth. We are also assuming that our data g (or b) is contaminated by a highly oscillato-

ry, but small amplitude error . We wa nt to replace our original ill-posed problem ( 1) or (2) by

a better conditioned problem that mollifies the effect of the noise in our data on the solution ,

and that gives us a physically meaningful solution that approximates the true solution in some

reasonable sense. As was shown in section 2, the SVDT approach is equivalent to projecting

the data onto the ‘significant’ part of the space. The difficulty as demonstrated in section 2 is

L 

that this projection may not mollify the effects of the error , unless the matri x in equation (2 )

has the oscillation property. The Ekstrom and Rhoads approach [9] also uses a singular value

decomposition , but with a weighting system instead of a truncation. This weighting can

effectively mollify the effect of the noise. However , by example , we will demonstrate that it

* 
can also mollify the desired solution, and this we do not want to do.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _  J
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The discussion in Ekstrom and Rhoads [9] is restricted to convolution equations . That is

in (I)

K(t .s) = K(t-s) (20)

and in (2)

A
1~ = A1_ ~ . (21)

S However, we will argue that the ideas in [9] can be extended to general matrices, if we use the

singular value decomposition. We should note that many interesting applications, for example,

numerical differentiation , Cullum [25], Anderssen and Bloomfield [121, and the signal process-
1-

ing of radar , Preiss [261, satisfy (20) or (21). Therefore, even if we restrict the discussion to

convolution equations, we are considering a large class of interesting problems. A matrix

• satisfying (21) is called a Toeplitz matrix . If (20) is satisfied and we discretize ( 1) appropri-

ately (2) will be a Toeplitz system. However , one should note that preservation of the

convolution character depends upon •the quadrature formula used.

Definition 5. A matrix A is persymmetric if it is symmetric with respect to the secondary

diagonal. a3(~~~ 1) . I 
~ 

j < n .  Clearly, a Toeplitz matrix is persymmetric.

Lemma 3. If Ax — b is a persymmetric matrix and P is the matrix of all zeros except for l ’s

on the secondary diagonal , then the matrix H AP is a symmetri c matrix. Furthermore , x =

Py, where y is the solution of Hy — b , is the solution of Ax = b.

Proof. Since A is persymmetric,

a11 = ~~~~~~~~ for 1 � i, j ~~ n . (22)

Moreover , since H = AP, h 1~ = a1(~~.~~~~1 S 1. But , (22) implies that a~1~~ 4 ~ = a~(~~1~~1) , the

i ,j en try in HT. Therefore, H is symmetric. Furthermore, if we set x = Py, then Ax APy

= Hy — b.
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Therefore, we can transform our system Ax = b into an equivalent symmetric system Hy — b.

-: 
• Since A is Toeplitz, H is a Hankel matrix.

/

Definition 6. A matrix A is an n x n  Hankel matrix if and only if a11 = h1÷~. 0 ~ i, j � n- i .

In a Hankel matrix the elements along the secondary diagonal are all equal, as well as all

elements on diagonals parallel to the secondary diagonal. S

~~

, -1
Ekstrom and Rhoads [9] make this transformation and work with H. Since H is

~
f .,

symmetric it has a full orthonormal eigensystem v~. 1 ~ j ~ n. They assume all the eigenva-

lues A1, 1 
~~ 

j � n are distinct. One can write the solution of Hy6 = b + e as

• 

n
y6 = I ~~~ (23)

where

bTv 6 Tv,
= + 1~~~j~~~n ( 24)

The error in (23) due to C depends upon e 1v1 and . To mollify this error , a weighting

sequence W(X~) is introduced. That is, they replace (23) by

n
y(e ,a) .tI W~ J 3~ v1 (25)

They consider several choices for W , using the formula

I A I
W =  (2 6 )

I A , I + a 1
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where a j is to be specified. For example , they consider setting a~ equal to some mulitple of

S the variation in the components of the individual eigenvector, v1. For example,

S n-i
a~ = a I (v1i+I - v1i) 2 (27)

i= 1
or

aj = a I (v3
1~~1 - 2 v~

1 + v~~)2.
i=2

- 

-. 

A comment on (27) is necessary. These are the relationships stated in Ekstrom and Rhoads.
-
.

* Observe that the first variation since v1 is normalized can be at most 4. Therefore, hidden in

the choice of a are the effects of the span of the and the dimension n, and we cannot say
S a is always small or large since its size will depend on n and the A~ scaling. To directly

incorporate the effect of n , we write (27) so that the expressions look more like difference

quotients , and obtain
,

n-I r (v.i+I - v. i)12
a - = a  I I I , ( 2 8 )i = i  I/n

and similarly for the second variation. Then if I A 3 I < n2, (28) can yield a significant

damping factor with a small value for a. When we discuss regulanzation we will be consider-

ing derivatives and small values of the regularization parameter , so we choose to use (28) in

our discussions to make the relationships between these 2 procedures more transparent.

Ekstrom and Rhoads [9J also mention setting a3 ~ a (or all j, this clearly would not connect

the weighting to any oscillatory behavior. One must decide how to choose a. Ekstrom and

Rhoads give the following heuristic. They observe that in the tests they ran , the residual I I
b + e - Ax(a) decreased initially as a was reduced and then increased as a was further

reduced. Furthermore , the value of a for which the residual was minimized , was a good

approximation to the value of a that minimizes the error. 

5- -~~~~~~ S - -  5~~~~~~S _
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The Ekstrom-Rhoads approach is interesting, especially if one has a medium size problem

S that is to be solved over and over again. In such a situation the eigenelements can be deter-

mined once , stored and used over again on any set of data. For very large problems one

would not want to have to compute the eigenelements , but this is also true of a SVDT.

However, in many applications the number of data points is reasonable. Use of the filter (28)

gives us a way of reducing the ef f ec t s  of the highly oscillatory eigenvectors, and of any small

eigenvalues corresponding to smooth eigenvectors. Thus, we can reduce the effect of the

measurement errors, and at the same tune reduce the numerical instabilities due to the very

small eigenvalues. The Ekstrom-Rhoads approach [9] is an SVD with damping of the effects

of oscillatory eigenvectors and of the small eigenvalues : in place of the block filter of the

Y SVDT which may have no direct relationship to oscillatory behavior. This damping mimics

regularization. Thus , this approach lies somewhere between an SVDT and a regularization.

The weighting in Tikhonov regulanzation , however , has a functional analytic interpretation:

whereas it is not clear what a similar interpretation for the weights in (28) would be. Observe

in particular that the weights W~ as a function of j need not be a monotone decreasing

function of j and in general may have any shape. By example we will show , however , that

this approach does not necessarily satisfy our objectives either. We construct a problem where

half of the components of 2 of the eigenvectors are oscillatory , but where the other compo-

nents are not. If such a frequency split occurs , the Ekstrom-Rhoads approach will damp out

the projection of the solution on these vectors and may damp out a significant part of the tru e

solution.

Example 2. Let n = 2m. Let e be the in - vector of all l ’s. Let h be the m - vector ( I ,

-1 , 1, -1 ,...). Then z 1 = (e , h) and z2 = (e, -h) are n - vectors and the vectors v = zi /~ n are

orthonormal. There exists a complete orthonormal basis for n - space, V = $ v 1, v : . . 5 .I .  Let 
~

> A 2 > ... > A~~ > 0 be any set of eigenvalues and set A — V.~VT whe re .\ is the diagonal

matrix whose jth diagonal entry is
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We want to solve Ax — b + e where

b — A(e ,0) and e — (O ,ôh). Clearly the solution for 8 = 0, equals

y =  — (v 1 + v 2 )

‘V

and the error in the data,

-• e = — 8(v 1 - v 2).

Therefore, for example with A 1 = 1/10, A2 = 1/20, the computed solution is
I

Yc = j  [W 1 ( 1  + 10 8)v 1 + W2( 1-208)v2

1~
The corresponding error in the solution is

- y = 
_ ‘!__ [((w 1 _ I )  + 10 W 18)v 1 + ((W

2 
- 1) - 20W28)v 2]. ( 30)

The Ekstrom-Rhoads procedure chooses the weights W by (28) measuring the oscillation in

v 1 and v2. Using the first variation , we obtain a 1 — 2an(n -2) and a2 — 2 a n2 . This

choice yields damping or small W 1. However , we see in (30) that to get an accurate solution

we need each W
~ 1.

The problem in Example 2 is the mixing of the frequencies. The eigenvectors do not

necessarily yield a separation of the frequencies. We note that if A is an oscillation matrix,

then the Ekstrom-Rhoads approach is a generalization of SVDT to include the effects of

oscillatory behavior. How much of a generalization it is depends upon the particular problem

S since for any problem (2) obtained from ( I ) ,  we expect the A s” + 0 as n +

S •
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Observe that unlike the SVDT, this approach cannot be interpreted as a modification of

the data; it is instead a modification of the operator.

H

where X is the diagonal matrix whose jth diagonal entry is (A~ + a3 ) .

To extend these arguments to systems that are not persymmetric, consider the following.

Let A = U I VT be a singular value decomposition of any matrix A. Thus, V is a system

of eigenvectors for ATA and U a set for AAT. Our solution of Ax = b is x = VI~~~ UTb.

If we know x is not oscillatory we can damp out those v3 and u3 with highly oscillatory

behavior. We take

(b Tu )  W V
x (31 )

A~

with a weight that measures any oscillation in u3 or v~: For example let

n-I r -
~

a1 = an 2 
~ L(u j k4d - u~k ) 2 + (v1

k + I  - v k) 2] - (32)
k=0

Using (32) we can apply the Ekstrom-Rhoads approach to any problem.

At the beginning of this paper we claimed that regularization is the natural setting for

handling noisy information , because it has a direct frequency interpretation , in the next section

we will justify this comment. The justification presented is valid only for convolution equa-

tio ns. The prototype convolution equation. which has numerous applications, is the numerical

di fferentiation of tabulated data, and many of the explanatory comments will refer to this

problem.

IA S~~S - -~~~~~~~ ~~~~ S S ~~~~- — S ~~~~~~ - - S~~~~ S~~~~~~~~~~~~~~ -~~~~~ S --
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4. Tikhonov Regularization. [101, [28].

S 
To discuss the regularization of equation ( 1) or (2), we restrict ourselves to convolution

equations K(t ,s) = K(t-s) or Toeplitz systems, A = (a 13 ) = (a~~). Thus , system ( 1) becomes

,1

g(t) =J K(t-s) f(s)ds , 0 � t ~ 1 (33)
0

We make this restriction because we want to introduce Fourier transforms. However , Tikho-

nov regularization is applicable to general equations (1).

The Fourier transform of an L 1(-~o,~o) fu nction h is defined as

~~~ =~: 
e~~t h(t ) dt (34)

In practice , as in our equation ( 1), we often have a finite , not infinite interval of integra-

tion , and in addition , in our numerical work we deal with sampled information. We will t ry to

incorporate these effects into our remarks , however , we will not present a totally rigorous

analysis.

As stated in the previous section an example of (33) is the computation of the derivative

of a function. Given g find f where

g(t) =,[ h(t-s) f(s) ds (35)

and h ( t - s ) = O  f o r t < s , and I for t > s .

~~~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —--~~ -- --- - ~~ • S S S ~~~~~~~ S ~~~~~~~~~~~~ ~~~~~~~~ S~~~~~~• • S • ~~~~~~~~-55- -~~- ~~~~~~~~~~~~~~~ -
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We denote any equation of type ( 1) by Kf = g. The regularization procedure replaces

( I )  by a one-parameter family of minimization problems which we denote by P(a),  a � 0.

For a given a � 0, we define P(a) as

minimize [ I I  K f - g  I I 2 + a ~~2 ( f ) J  (36)

C

where I I • I 12  is some norm measure of the error (Kf - g) in f being a solution of ( 1),

and ~2(.) is some norm , usually different from I I I I 2 , which controls the smoothness of f.

For example ,

~(f) 
._,

_/

.. 
f2 :1• (fW)2 (37)

where f~~ denotes the derivative of f.

Definition 6. The family, P(a) , a ~ 0 is a regularizing family for Kf = g if (1) as a + 0. the

solution 
~a of P(a) converges in some reasonable sense to the solution of Kf = g. and (2 )

each problem P(a) is well-posed.

Defi nition 7 . A problem is well-posed if it has a unique solution and this solution depends

continuously on the data.

Definition 7 is the Hadamard defintion of well-posedness. However , we should note that

a problem can be well-posed but ill-conditioned. For example every system ( 2 )  is well-posed,

since we assumed A is invertible. However , depending upon the span of the singular values ,

this system can be arbitrarily ill-conditioned. In numerical work we want well-conditioned , not

j ust well-posed problems and as we look at regularization we will try to see if the approximate

problems it generates are in fact well-conditioned.

In practice our problems contain measurement errors. When there is error, we cannot let

the regulanzation parameter a become too small. Note that even without such measurement S

—~~~~
— • S • -.• • •~~~-~~~~~ •- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • •~• •~ • • • • • ••



r ~~~~~~~~~~~~~~~~~~ .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

. 

S

Page 2

errors , there are errors due to the quadrature approximations and due to roundo ff. These

errors also limit the size of a. In practice we find that the error I I ~T rue - f a I I 2 reduces

initially as a is reduced , reaches a minimum which depends on the problem and the type of

error present and then increases again as we continue to reduce a. Procedures for determining

an appropriate value of a are given in Wahba [27], Turchin , Kozlov and Malkevich [28],

Gordonova and Morozov [29].

One of our stated objectives is to replace our original problem by a better conditioned

one. We must determine the ‘condition of P( a) ’ . The Euler necessary conditions of optimality

S . for P(a) are
~

. 

S •

(K *K + aB) f = K*g and f~~(O) = f 111 ( l )  = 0 (38)

where B corresponds to ~2. Equation ( 3 8)  is simply the sta tement that at an opt imum point

f of P(a),  the first variation of (36) must vanish. If we have equations (35), and ( 37) the

problem of differentiation , equation (38) is the integro-differential equation

f ~f ~ 
f (u)  du + af - af 12~ =f g(u) du , f 1’

~(0) = f W ( 1) = (39)

In Cullum [ 25 ]  an additional term J’
~ 

f was added to the left-ha nd side of (39) . This

corresponds to adding(foI 
f)2 into the expression in (36). To solve (36), we solve (39 ) .

Using a quadrature rule and discretizing the derivative in (39), we obt ain an algebraic system

(H + a B ) x =  b (40)

How does the addition of the operator aB affect the condition of K K  or H~ The existing

regu la rization results Anderssen and Bloomfield [30]. Hilgers [31] indicate that in many cases

the best choice of a is a small number , fo r ex ample io~ to 10 5 1 . . How can such a small

number have a significant effect on the condition of our problem K K f  = K g  .~
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Clearly, if ~2( f) =10
1 f2 so that B = I , the smallest eigenval ue is a and the condition

S of (38) is essentially 1/. a. So, if a is very small, we have not done much to stabilize our

numerical computations. However , if we take Bf = f~f( 2 ) , then we can argue that we may

have significantly affected the condition. As is also noted in Lee et al [11], where a very

-
~ different type of regularization analysis is presented , it is important that the operator B in

(38) be an unbounded operator whose eigenvalues have a limit point at infinity. The ill-

S posedness of ( 1) is due to the compactness of the operator K; compactness implies that the

singular values of K have a limit point at 0. We must add on an operator that can counter-

act this decay. To achieve some feeling for condition , let us consider the circulant matrices
p

agai n. Note that any circulant is also Toeplitz. If the first row of our circulant C is c = c0,

the n we recall the following interesting fact that the jth component of the finite

Fourier transform of c . 0 
~~ 

j � n - 1,

n-i f2irikj \J (c) = I expI I c k = w3
Tc = X~(c) . (4 1)

k=0 \ n  /

That is the Fourier coefficients are just the eigenvalues of C. In (41) W
i ~S the jth eigenvec-

tor of C given in ( 14).
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For B = C - f ( 2 )  and f( 1) = f(n ),  a discretized version of B is the symmetric circulant

/ 2+h 2 -l 0 0 -1
( - 1  2+h 2 -l 0 0

S 
B = !_ 1 0 -l 2+h2 -l 0 (4 2)

h2 
~~o 0 -1 2+h 2 -l

0 0 -I 2 -1-h2

where h = ~~ is fixed. 

. . . . . 

S

• Observe that B is diagonally dominant , the refore all the eigenvalues are positive in fact

p.

2
A = —

~~
- ( 1 - c os(2ir j /n )) + 1 (43 )S 

~ h-

S - 

If h = I /n,  the n A 3 = 0(n 2), and ~~~ = A~ 1 ~~ j � n/2 (if n is even).

Before proceeding we state the following theorem which is proved in Cullum [32].

Theorem 4 . Let K be a positive definite, symmetric operator, then the family of

equations , a ~ 0,

(K + aB)f = g, f W (o) = f ”~( l )  = 0 (44)

where B is obtained from a norm as in (38) is a regularizing family for (1).

Theorem 4 allows us to use (44) in place of (38). Let C be a symmetric, positive

definite , but ill-posed circu lant obtained from ( I )  whose first row is c0,c 1 c~~1, and consider S 
-

the equat ions

(C + aB)x = b

Since the matrix D = C + aB is symmetric and positive definite, the condition of D is just

the ratio max A~(D ) /m in A 3 (D) .  All l-circulants have the same family of eigenvectors so we

have A 3(D) = X~(C) + a A 3 ( B) . We know ~s the discretization is refined , that mm A 1(C) + 0

and max .k 3 (B) ~ x . The effect of aB can now be explained by giving an example.
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• Example 3. Let A J (C) = I/j~ and A~(B) = j S for some q > 0, s > 0 and j = I ,. . . .  n/2.

S Note that X~~(D) X3(D), since D is symmetric. Then the minimum of A 3 (D) for a given

value of a is not less than the minimum of

cS

~~~~~~~~~~ 

+ aLi)S 
~, > 0 .

But, this minimum occurs when ~ = [q/as] ”~’~~~ , and the corresponding minimum value of

(45) is of the form

aaq/q~~ . (46)
S f

S For example if s = 2 which would correspond to (42) and q = 2, that is the eigenvalues of C

decay like 11n2 , then

X min ( D ) �2 ~/ a .  (4 7)
S

n-I
Moreover , let ~~

‘ 
= I I c3 I . the n

0

A max W) � 4 a ~~ + C . (48)

Therefore , the condition of D . to be specific take s= 2,

X max (D)
< 2~an 2 

+ — . (49)
A min (D) 2~/a

If a = 10 10 and n ~ 10~, this condition is ~ I0~.

From (46) we can see the effect on conditioning of increasing the order of the smoothing

norm. i.e. i ncreasing s, or of increasing the rate of decay of the eigenvalues of the operator C.

i.e. increasing q. If we keep the order of B. s. fi xed and increase the rate of decay q, we see

that the condition of (44) deteriorates towards I / a  as q + ~~~ . Similarly, if we fi x the rate of

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -~~ - • • • S
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decay q and increase the degree of smoothing s we improve the condit~nning. These
S comments are for a fixed. However , as we vary s or q we do not expect the changes in a

to be enough to compensate for the changes in (46) so that there is a significant net gain in

practice.

The problem of analytic continuation given in section 2 , see eq uation (13 ) is an interest-

:

‘

~ 
ing example of type (44). The appropriate discretization yields a symmetric circulant matrix

whose eigenvalues are A~ = (ri + r’~i)/(I - r~) j = 0 n/2 . Since , r < I , for large n , A~

is of the order r~ j = 0.,,,, n/2. (Assume n is even). See Varah [8] for details. If we

-
~~ • .. regularize this problem using (42) the eigenvalues of the regularized matrix are for a given

r < 1 of the order ,

A3 (0) r~ + aj2. (50)

As before nun A 3(D) is not smaller than the minimum of

( 51)

q is convex with a unique minimum ~,(a) satisfying

2at~,= — (52)
a

where a = - in r. Taking logarithms of both sides and assuming that au~ >> In ~i , we obtain

the estimate w(a) In a / In r. Using this estimate we estimate the condition of (44) as

‘~(a( In a) 211 
. For a 10 10, this quantity is like l0~. Therefore , the exponential decay in

C adversely affects the conditioning and as is discussed in Cullum 132] the corresponding

goodness of the regularization approximation.

We now consider the more genera l case of Toeplitz matrices and convolution operators.

We note again that starting with (33), depending on the problem and the quadrature rule used.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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we may or may not generate a Toeplitz approximation. In particular if K is Toeplitz so is K*,

• however , K*K need not be Toeplitz, so we have to be careful.

As described above , for any circulant matrix the coefficients of the associated finite

Fourier transform and the eigenvalues of the matrix are identical , so that we can discuss the

condition of the circulant by using the maximum and minimum of the Fourier trans form

5 - 

S 

coefficients or of the eigenvalues.

S
. Symmetric Toeplitz matrices and circulant matrices are strongly related Gray [23], and for

such matrices we have the following generalization of the relationship between the Fourier
.4

transform of the Toeplitz matrix and the eigenvalues of that matirx.

Theorem 5. Widom [33] Let T~ / Co C 1 .  . . Cfl
’
?\

/ c1 c0.  - . c~~2 )

S 4

C0

S be a symmetric Toeplitz matrix. We assume that the C~ are the Fourier coefficients of an L2 -

function 
~~~

. Let m = ess. inf ~ and M = ess. sup. ~ on the real line.

Then all the eigenvalues of T~ satisfy

in � A 1(T4) ~ M . (53)

This subject matter is discussed in detail in Grenander and Szego [34]. In our case M +

so we also need the following theorem.

Theorem 6 Grenander and Szego [34]. If A is any Hermitian matrix for which the sum of

the moduli of the elements in each row have a common bound ,

S n

~ I a ~ I ~~~~~M 1 ~~i �n .
j= 1

S — -
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• Then

I A 3 (A) I �M 1~~~j < n.

S 

Theorem 6 is simply a statement about matrix norms, see Wilkinson [35], for example.

I 
It should be emphasized that Theorem S is not directly applicable to our problem because

it applies to finite Toeplitz matrices that are sections of infinite matrices. As we increase a
I

in our discrete approximations to (33) we are not simply constructing higher dimensional

• sections of one infinite dimensional Toeplitz matrix, so the following discussion is somewhat

heuristic. Thus, we will consider the Fourier transform of our operator K *K + aB and
.1

1~ . replace the normal defimtion of conditioning of a system of linear equations by the ratio of the

maximum of the Fourier transform of our operator to its minimum. This is sometimes called

the dynamic range. Makhoul [36].

We want to solve (33); we assume K is symmetric and positive definite. The backward

S heat equation is an example of such a problem , Varah [8]. We regularize (33) using Theorem

4 and take the Fourier transform of equation (44), obtain ing

(~~ + a ~~) ’?= ’~ (54)

S where A denotes Fourier transform . We have neglected the effect of the finite interval. We

are in fact acting as though our equation were

S X

J

” 

K (t—s ) f(s) ds = g(t) . (55)

If we apply Theorem 5 to our problem (heuristically ) having first used the simplest

quadrature rule , namely rectangles . then the Fourier transform of the operator K corresponds

to the function •. Thus, we argue that the maximum and minimum of this Fourier transform

_ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _
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of K give us an estimate of the condition of the discrete Toeplitz systems (2) . For example

for numerical differentiation taking Fourier transforms of (38) we get (54) equals

ri lA 1 A
S I — + a ( ~,

2 + 1) i f  — g
LW 2 J

As obtained in (46), the minimum of this transform is 2v’~ . Clearly, it has no upper bound.

However , in practice the number of data points n is bounded for example n ~ IO~ and we

can use Theorem 6 to get an upper bound on the eigenvalues. Let k be an upper bound on

* 
K then

M < a n 2 8 + k  (37)

• Therefore , the condition number of the matrix D generated from (35) satisfies

A m (D) kax 
~ 8v’a n 2 + —  ( 38)

A min (D)

If a = l0~~~ and n = 102 then this becomes

A (D)max 
~ 8 + 104k ( 59)

~ min (D)

A comment about the preceeding arguments is necessary. In practice see Cullum [25 1

Hilgers [311, it was proposed that one invert the B operator and obtain a pure integral

equation. Cullum [25] performed a nonsymmetric inversion, Hilgers [31] a symmetric one.

This eliminates the need to approximate derivatives of f in Bf by differences. This conver-

sion , however , yields an equation whose condition behaves like 1/a , and we are back to the

same effect on the conditioning as using B = I , except that the conversion has simultaneously

smoothed the data and the equations. In many cases this smoothing effectively removes the

noise, and the smoothing has been done in a natural way. Lee et al I l l ]  and Hilgers [3 1]
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mention the question of whether to discretize (38) directly or to invert B first. However , to

date , there is no published analysis of this question.

Now let us use Fourier transforms to examine what regularization is doing to any random

noise in the data. Anderssen and Bloomfield [12] did this for numerical differentiation , using

the 2nd derivative of equation (38) . To solve (38), again ignore the fact that we are really on

a finite interval , take Fourier transforms and obtain (54).

Then

- • A 
(60)

~~
+ a B

1~

• ,• We can deconvolve (60) only if the right-hand side is in L 1. For the numerical differentiation

formula, K is not symmetric and we have to use equation (38) which becomes equation (56)

ri
I —  + a(w 2 + 1 ) I f
L W~ • J 1W

Note that in Cullum [25]{~~ f] 
2 was added to the P(a) minimization, one can show that this

improves the conditio,ning, but it cannot be incorporated into the Fourier transform frame-

work. In this case

p. A IW~~ (61)
S 1 + a ( w 2 + w 4)

For small a and w, in (61) behaves like 4 for w large like ~ /aw 3, with a smooth

transition in between. Therefore, e L 1 if e L1, and deconvolution is legitimate. In

A A Aparticular if g~ — g + e then , the error in I for large w

S 
• f~ — 0 ~~~~~~~~~~~~~ . ( 6 2 )

Thus , we have an explicit means of decreasing the effects of highly oscillatory error in the

data. S
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If random noise is present in the measurements so that we have g~ — g + e instead of

g. then g6 may have a spiky pattern and these spikes may appear in g~ as peaks. But the

spikes in g~ should by assumption correspond to high frequencies u~ and at high frequencies

g~ is modulated by w 3. One could get higher modulation using higher derivatives.
4

A A
Thus , the purpose of aB is to counteract the decay in K*K(w) and make the deconvolu-

tion legitimate. If B is symmetric Toeplitz and given for example by (42), we know its

-~ eigenvalues + as n + ~~~, so ~ (w) + ~c as w + ~c. Therefore, we have constructed a smooth

filter on the transform of the given data that decays nionotonically to zero as e + ~~~. How

quickly it decays depends upon a and the order of B. This filter has the functional analytic

interpretation given in (36). Regularization is a modification of our given operator , not just a

projection or modification of the data. For numerical differentiation , if g = I an cosn,rt , then

as Anderssen and Bloomfield [121 showed the nth Fourier coefficient of the solution f .

Sr 
__________________ 

1
g~ , ( 6 3 )

L’ + a (n~r) 2 + a(n,r )4 J

In numerical work we have to use the finite Fourier transform and we have to understand

the effects of having only a finite number of data points from a finite interval instead of the

continuous values over the whole real line. The finite interv al corresponds to multipl ying a

S function defined on the whole interval by a unit pulse; the finite number of samples introduces

an effect called aliasing, when the effects at many frequencies get mapped onto the same

frequency. See Bloomfield [24] for details. Therefore , we have to assume that we have

sampled at a high enough sampling rate to pick up the maximal frequency in the noise. This is

typically feasible since most instruments are band-limited so that the noise in the data is also

band- ’imited. Otherwise , a portion of the noise could be mapped back into the lower frequen-

cies which should represent the solution.
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Let us summarize the above comments. If the error is directly related to frequency or

oscillation , than a natural basis for our space is the Fourier exponential functions since these

are parameterized in the frequency. A smooth weighting of the coefficients in the expansion

S 
of given functions in this basis corresponds to damping any highly oscillatory error and not to

damping the smooth solution.

Regularization, however, has its own problems, of a different nature than the SVDT. One

of these is discussed in Cullum [32] where we consider the choice of B and argue that this

choice is important because it affects the condition and the rate of convergence of the solution

of the P(a) problem to the solution of the original problem. If there is noise in our data , we

know we cannot make a arbitrarily small. Franklin [16] discusses rates of convergence but

doesn ’t explain what is causing this bad behavior. One of the examples is the backward heat

equation which Varah [8] solved using the SVDT. We noted earlier that for this problem the

eigenfunctions have the oscillation property so there is a direct connection between truncating

the eigenvector expansion and in mollifying the noise. Therefore , we would expect SVDT to

work better on this problem than regularization.

5. Summary.

Three procedures SVDT, Hanson [7], the Ekstrom-Rhoads, Hankel matrix procedure [9],

and Tikhonov regularization [10] have been described and their treatment of highly oscillatory

noise in the data described. We have seen that SVDT uses the singular vectors of the operator

and is equivalent to projecting the given data onto a subspace of the singular vectors.

gTu . I
S

It is numerically stable , but requires the amplified projections to decay

to zero rapidly , and except when the operator involved has the oscillation property gives no

explicit means of mollifying the effects of the errors in the data. This latter property was

demonstrated by an example.
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We have also seen that the Ekstrom and Rhoads procedure [9] which they discuss only for

convolution equations , but which could be extended to general systems using the SVD and a

weighting which measures variation in either the eigenvectors of K*K or the eigenvectors of

KK * , is also a SVD approach. The original system is replaced by an equivalent symmetric

system and an expansion made in the ei genvectors of this system. The weighting they

introduce will damp components corresponding to highly oscillatory eigenvectors and damp the

effects of small eigenvalues thereby making the procedure numerically stable. However , as we

S 

‘ demonstrated by example the damping proposed may also damp the desired solution due to the

• mixing of frequencies which can occur when one uses an eigenvector basis. Moreover , the
S weightings that they introduce do not seem to have functional analytic interpretations.

S The Tikhonov regularization procedure was also discussed for convolution equations , and

Fourier transforms wee introduced. We used the Fourier transform to estimate the condition

of the regularization approximations. Using numerical differentiation as an example we

showed (as in Bloomfield and Anderssen [12]) that there exists a direct relationship between

the damping associated with the regularization parameter a and the elimination of highly

oscillatory noise. We also noted , however , that regular ization is not necessarily always the

method to use , its usefulness depends upon the rate of convergence of the regularization

approximations. This is discussed in more detail in Cullum [32].
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